- Earth is colorful
- color of Mars is Red
- color of Neptune is blue
- venus is the brightest planet
- color of Uranus is Green
- venus has a longest day time its one day is equal to 225 days of earth
- jupiter has a shortest day time of 10 hour
- venus is the hottest planet with a temp of 480 C and coldest planet is pluto with -230 C temp
- fast rotating planet is is jupiter and slow rotating planet is venus
- rocky planets are Earth, Mercury , Mars ,Venus,
Tuesday, 14 October 2014
colour of planets in solar system
Sunday, 12 October 2014
Wounder of the Nature
Nature has large selection of wounder in the form of rivers, mountain, rocks, forest, etc, many of it is very beautiful and situated in many parts of the earth, earth is also a wounder of the nature , some of the wounder on the earth are.
- fraset islands located in southern coast of Queensland Australia.
- The great Barriet Reef located in the Coral sea cost of Queenland in Australia.
- Milford sound located in New zealand
- Ayres Rock located in southern part of central Australia.
- Mount Thot in canada
- cathedral grove located in british colombia canada
- Mauna kea in united state of america situated in Hawaii mountain
- red rocks part in united state of america
- niagara fall in canada .
- grand canyon in united state of america
- iguazu waterfalls in argentina
- torres del paine in chile
- Angel falls in canaima national part in bolivar state venezuela border brazil.it the tallest waterfall in the world.
- rio de janeito harbout in brazil
- Uyuni salts flats in bolivia.
- colca canyon in peru
- kaieteur falls in Guiana the world largest single drops waterfalls.
- victoria falls situated in zambezi river.
- blue lakes in liberia.
- rock formation of cappadocia in turtey
- blue grotto in italy
- strokkut located in the geothermic of iceland .
- ochtinskai aragonite in cave slovakia in the village of ochtina
- giant,s causeway ireland the most famous landmark.
- the midnight sun
- polar night
- caspian sea in border of russia and iran
- fingal,s cave scotland in the island off staffa.
- sahara desert of africa the greatest desert in Arabic, the hotest desert in the world.
- serengeti Migration in Tamzania and kenya the oldest ecosystems on earth,
- The Himalayas in Nepal
- Great Banyan tree in india located in botanical gardens of shibpur in kolkaata.
- chocolate hills in philip
- Dead sea in jordan
- Neelakkurinji in india
- jeita in grotto in lebanon
- Ramon cratet israel
- magnetic hills in LEH Ladakh in northern in india which is like a magnets and attractive in nature
- cox,s bazar bangladen in south of chittagong
- flaming cliffs in mangolia in gobi desert
Spark
spark result increase in the number of free electrons and ions, due to which air become temporary electrical conductor , this process is known is dielectric breakdown.
spark can cause high explosion eg, methane gas explosion due to spark
spark are of various size , it may small or may be large which strike between clouds and ground.
and is of 100 million volts,
BY .....DR Muhammad Naeem Arbab uet peshawar kpk pakisatan
Sunday, 22 June 2014
solar system
The potential for solar system is enormous, foe instance, it is estimated that about 1% of the area of sahara Desert covered with solar thermal power plant would theoretically be sufficient to meet the entire global demand of electrical energy , therefor the solar thermal power system will play an important rule in the global future electricity supply, the largest cost involve in solar thermal power plant is the initial capital cost to build the plant rather than operating costs.solar thermal plant have the added advantages over photovoltaic electric generation in that it is possible to generate electricity during unfavorable weather and its at night using heat exchange system the vast amount of heat transfer fluid circulating in the solar field already represent a considerable storage capacity which can bridge short term cloudy case.
however ,due to poor part load behavior of solar thermal power , such power plant should been installed in region with a minimum of around 2000 full load hours . this is the case in region with direct normal irradiance of more than 2000kwh/meter square ,these irradiance values can be found in the earth sunbelt, thermal storage can increase thes number of full load hours significantly.
Wednesday, 18 June 2014
code for the generation of signals in matlab
Dear friends generation of signals in matlab is very simple method once you understand the code you can easily plot any kind of signal for your engineering works etc , here is some code and prepare plot signals along with diagram, read it carefully and try to understand each and every point of it,
PLOTTING A CONTINUOUS TIME COMPLEX EXPONENTIAL SIGNAL
c=10;
f=5;
ph=pi/2;
T=1/f;
t=0:T/40:10*T; %10 cycles
x=c*cos(2*pi*f*t+ph);
a=input('enter 1,0 or -1;a='); %enter either positive, negative, zero
y=exp(a*t);
z=y.*x;
plot(t,z),
xlabel('t'),
ylabel('z'),
title('PLOTTING A CONTINUOUS TIME COMPLEX EXPONENTIAL SIGNAL'),
grid on
TASK-3:
TO PLOT A PIECE-WISE SIGNAL
%for first segment
t0=-2:0.01:0;
x0=t0;
%for second segment
t1=0:0.01:3;
x1=4*ones(size(t1));
%for third segment
t2=3:0.01:4;
x2=-3*t2+4;
x=[x0 x1 x2 ];
t=[t0 t1 t2 ];
plot(t,x,'red','linewidth',3);
xlabel('time');
ylabel('x(t)');
title('PLOTTING PIECEWISE CONTINUOUS TIME SIGNAL');
axis([-3 4 -10 5]);
TASK-4:
TIME TRANSFORMATION OFF A PIECE WISE SIGNAL
%for first segment
t0=-2:0.01:0;
x0=t0;
%for second segment
t1=0:0.01:3;
x1=4*ones(size(t1));
%for third segment
t2=3:0.01:4;
x2=-3*t2+4;
x=[x0 x1 x2 ];
t=[t0 t1 t2 ];
subplot(2,1,1),
plot(t,x,'red','linewidth',5),
xlabel('time'),
ylabel('x(t)'),
title('TIME TRANSFORMATION OF CT SIGNAL(ORIGINAL SIGNAL)'),
grid on,
axis([-4 8 -10 5]);
%TIME TRANSFORMATION (Shifting, Scaling, Reversal)
t4=-2*t+4;
subplot(2,1,2),
plot(t4,x,'black','linewidth',5),
xlabel('time'),
ylabel('x(t)'),
title('TIME TRANSFORMATION OF CT SIGNAL(TRANSFORMED SIGNAL)'),
grid on,
TASK-5:
3D PLOT OF CONTINUOUS TIME EXPONENTIAL SIGNAL
t=0:0.0001:10;
x=20*exp(i*5*t);
subplot(2,2,1),
plot(t,real(x)),
xlabel('time'),
ylabel('real part'),
title('PLOTTING REAL PART');
subplot(2,2,2),
plot(t,imag(x)),
xlabel('time'),
ylabel('imag part'),
title('PLOTTING IMAGINARY PART');
subplot(2,2,3),
plot(t,x),
xlabel('time'),
ylabel('x'),
title('PLOTTING(X)');
subplot(2,2,4),
plot3(real(x),imag(x),t),
xlabel('real part'),
ylabel('imag part'),
zlabel('time'),
TASK-6:
A)PLOTTING CONTINUOUS TIME SQUARE WAVE USING FOURIER SERIES
B)PLOTTING CONTINUOUS TIME TRIANGULAR WAVE USING FOURIER SERIES
% Square Wave
t=-10:0.001:10;
dc=1/2;
sum=0;
for k=1:2:200;
sum=sum+(3/(k*pi))*sin(k*t);
end
x=sum+dc;
subplot(2,1,1),
plot(t,x),
xlabel('time'),
ylabel('magnitude'),
title('square wave'),
%Triangular Wave
t=0:0.01:5;
sum=0;
for k=1:2:200;
sum=sum+(-16/(k^2*pi^2))*cos(6*pi*k*t);
end
subplot(2,1,2),
plot(t,sum),
xlabel('time'),
ylabel('magnitude'),
title('triangular wave')
TASK-7:
SOLVING DERIVATIVES, INTEGRALS & DIFFERENTIAL EQUATIONS
% DERIVATIVE
syms x a b c f
f=3*x^3-4*x^2+6*x-3;
a=diff(f,x)
b=diff(a,x)
c=diff(b,x)
RESULT:
%a = 9*x^2 - 8*x + 6
%b = 18*x - 8
%c = 18
% PARTIAL DERIVATIVE
f=x^2*y+x*y^3-x^3+y^2;
a=diff(f,x)
b=diff(f,y)
RESULT:
%a = - 3*x^2 + 2*x*y + y^3
%b = x^2 + 3*x*y^2 + 2*y
%INTEGRALS
PART-A:
f=3*x^3-4*x^2+5*x-3;
a=int(f,x)
b=int(f,x,0,5)
RESULT:
% a = (3*x^4)/4 - (4*x^3)/3 + (5*x^2)/2 - 3*x
% b = 4195/12
PART-B:
f=cos(x)*sin(y);
a=int(f,x,pi/2,pi)
b=int(a,y,0,2*pi)
RESULT:
% a = -sin(y)
% b = 0
%DIFFERENTIAL EQUATION
PART-A:
d=dsolve('D2y+3*Dy+2=sin(t)','t')
RESULT:
% d =C18 - (2*t)/3 - (3*cos(t))/10 - sin(t)/10 + C19/exp(3*t) + 2/9
PART-B:
f=dsolve('3*D2y+4*Dy=sin(t)','t')
RESULT:
%f =C25 - (4*cos(t))/25 - (3*sin(t))/25 + C26/exp((4*t)/3)
PART-C:
g=dsolve('D2y+2*Dy+3=sin(x)','y(0)=0','x')
RESULT:
%g =C30/exp(2*x) - (3*x)/2 - (2*cos(x))/5 - sin(x)/5 - C30 + 2/5
TASK-8:
EVALUATING LAPLACE TRANSFORM AND Z-TRANSFORMS
% LAPLACE TRANSFORM
>> syms f a t F C b
f=exp(-a*t)*heaviside(t);
// heaviside(t), 0 for t<0, 1 for t>0 and 0.5 for t==0
F=laplace(f)
RESULT:
% F = 1/(a + s)
>> syms x h t X H Y y
x=sin(t);
h=10*exp(10*t);
X=laplace(x)
H=laplace(h)
Y=H*X;
y=ilaplace(Y) // inverse laplace
RESULT:
% X = 1/(s^2 + 1)
%H = 10/(s - 10)
%y =(10*exp(10*t))/101 - (10*cos(t))/101 - (100*sin(t))/101
% z-transform
>>syms x h X H Y y a n
x=a^n;
h=b^(-n);
X=ztrans(x)
RESULT:
% X = -z/(a - z)
TASK-9:
DISCRETE TIME SIGNAL
PLOTTING
% DISCRETE TIME SEQUENCE
n=-4:4;
x=[9 1 -2 4 -5 6 -1 7 -8];
stem(n,x);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT Sequence');
axis([-5 5 -10 10]);
% DISCRETE TIME EXPONENTIAL SIGNAL (n>=0)
% case 01(a>1)
c=2;
a=5;
n=0:15;
x=c*a.^n;
subplot(3,2,1);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a>1');
grid on;
%case 02(0<a<1)
c=2;
a=0.5;
n=0:15;
x=c*a.^n;
subplot(3,2,3);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when 0<a<1');
grid on;
%case 03(a=1)
c=2;
a=1;
n=0:15;
x=c*a.^n;
subplot(3,2,5)
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a=1');
grid on;
%case 04(a<-1)
c=4;
a=-2;
n=0:60;
x=c*a.^n;
subplot(3,2,2);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a<-1');
grid on;
%case 05(-1<a<0)
c=2;
a=-0.5;
n=0:30;
x=c*a.^n;
subplot(3,2,4);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when -1<a<0');
grid on;
%case 06(a=-1)
c=2;
a=-1;
n=0:15;
x=c*a.^n;
subplot(3,2,6)
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a=-1');
grid on;
% DISCRETE TIME EXPONENTIAL SIGNAL (n<=0)
% case 01(a>1)
c=2;
a=5;
n=-15:0;
x=c*a.^-n;
subplot(3,2,1);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a>1');
grid on;
%case 02(0<a<1)
c=2;
a=0.5;
n=-15:0;
x=c*a.^-n;
subplot(3,2,3);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when 0<a<1');
grid on;
%case 03(a=1)
c=2;
a=1;
n=-15:0;
x=c*a.^-n;
subplot(3,2,5)
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a=1');
grid on;
%case 04(a<-1)
c=4;
a=-2;
n=-60:0;
x=c*a.^-n;
subplot(3,2,2);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a<-1');
grid on;
%case 05(-1<a<0)
c=2;
a=-0.5;
n=-30:0;
x=c*a.^-n;
subplot(3,2,4);
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when -1<a<0');
grid on;
%case 06(a=-1)
c=2;
a=-1;
n=-15:0;
x=c*a.^-n;
subplot(3,2,6)
stem(n,x,'linewidth',2);
xlabel('time(sampled)');
ylabel('magnitude');
title('DT exponential signal when a=-1');
grid on;
TASK-10:
DISCRETE TIME CONVOLUTION
n0=0:20;
x=5*(-0.5).^n0;
n1=-10:5;
h=(2/3).^n;
n2=-20:10;
y1=conv(x,h);
y=y1(1:length(n2));
subplot(3,1,1);
stem(n0,x);
xlabel('time(sampled)');
ylabel('magnitude x(n)');
title('input signal');
grid on;
subplot(3,1,2);
stem(n1,h);
xlabel('time(sampled)');
ylabel('magnitude h(n)');
title('transfer function h(n)');
grid on;
subplot(3,1,3);
stem(n2,y);
xlabel('time(sampled)');
ylabel('magnitude y(n)');
title('output signal');
TASK-11:
CONTINUOUS TIME CONVOLUTION
t=0:0.01:10;
x=ones(1,length(t));
h=2*exp(-1*t);
y1=conv(x,h)*0.01; //multiplying with step size
y=y1(1:length(t));
figure(1);
subplot(3,1,1);
plot(t,x);
xlabel('time');
ylabel('x(t)');
title('convolution of continuous time signal');
subplot(3,1,2);
plot(t,h);
xlabel('time');
ylabel('h(t)');
subplot(3,1,3);
plot(t,y);
xlabel('time');
ylabel('y(t)');
title('convolved signal')
PLOTTING A CONTINUOUS TIME SINUSIOD
To plot a continuous time sinusiodal copy this code and paste it in installed matlab sofware, run the program you will get wave given below in the diagram.
%PART-A
a=10;
f=1000;
ph=pi/2;
T=1/f;
t=0:T/40:10*T; %10 cycles
x=a*sin(2*pi*f*t+ph);
plot(t,x),
xlabel('t'),
ylabel('x'),
title('PLOTTING A CONTINUOUS TIME SINUSIOD'),
grid on
%PART-B
a=10;
f=1000;
ph=pi/2;
T=1/f;
t=0:T/40:10*T; %10 cycles
x=a*cos(2*pi*f*t+ph);
plot(t,x),
xlabel('t'),
ylabel('x'),
title('PLOTTING A CONTINUOUS TIME SINUSIOD'),
grid on
Saturday, 31 May 2014
How to generate DISCRETE TIME CONVOLUTION in matlabs,
DISCRETE TIME CONVOLUTION
n0=0:20;
x=5*(-0.5).^n0;
n1=-10:5;
h=(2/3).^n;
n2=-20:10;
y1=conv(x,h);
y=y1(1:length(n2));
subplot(3,1,1);
stem(n0,x);
xlabel('time(sampled)');
ylabel('magnitude x(n)');
title('input signal');
grid on;
subplot(3,1,2);
stem(n1,h);
xlabel('time(sampled)');
ylabel('magnitude h(n)');
title('transfer function h(n)');
grid on;
subplot(3,1,3);
stem(n2,y);
xlabel('time(sampled)');
ylabel('magnitude y(n)');
title('output signal');
grid on;
n0=0:20;
x=5*(-0.5).^n0;
n1=-10:5;
h=(2/3).^n;
n2=-20:10;
y1=conv(x,h);
y=y1(1:length(n2));
subplot(3,1,1);
stem(n0,x);
xlabel('time(sampled)');
ylabel('magnitude x(n)');
title('input signal');
grid on;
subplot(3,1,2);
stem(n1,h);
xlabel('time(sampled)');
ylabel('magnitude h(n)');
title('transfer function h(n)');
grid on;
subplot(3,1,3);
stem(n2,y);
xlabel('time(sampled)');
ylabel('magnitude y(n)');
title('output signal');
grid on;
Subscribe to:
Posts (Atom)